Mathematics - Decimals

What do I need to be able to do?

| Four operations with decimals

Round numbers

to powers of 10

to a given number of decimal places

to a given number of significant figures

Know the difference between **rounding** num-

bers and truncating numbers

Estimate calculations

Understand and use limits of accuracy

Understand and use error interval notation

II Keywords:

Accuracy: the exact value of something

Estimate: make an informed guess using available information

Round: estimate a number to a level of accuracy

Decimal places: the digits after the decimal point

Significant figures: starting with the 1st non-zero digit and decreasing in place value

Truncated: the number cut off at a level of accuracy

II Limits: the highest and lowest values a number could be prior to rounding

Round to powers of 10:

Nearest - look at the next place value and decide:

| One: 0.0 - 0.4 round down, 0.5 - 0.9 round up

| **Ten**: 0 - 4 round down, 5 - 9 round up

Hundred: 0 - 50 round down, 50-99 round up

l Thousand: 0 - 499 round down, 500 - 999 round up

"zero to 4 let it go, 5 or above give it a shove"

Round to decimal places:

Nearest - look at the next decimal place value:

If it is 0, 1, 2, ,3 or 4 round down.

If it is 5, 6, 7, 8, or 9 round up

Examples:

I Round a) 6.47 to 1dp = 6.5 (7 so round up)

b) 4.542 to 2dp = 4.54 (2 so round down)

c) 5.99 to 2dp = 6.00 (9 so round up)

Round to significant figures:

Nearest - start at the first non-zero value:

If it is 0, 1, 2, ,3 or 4 round down.

If it is 5, 6, 7, 8, or 9 round up

Examples:

Round a) 6.47 to 1 sig fig = 6(4 so round down)

- b) 4.542 to 3 sig fig = 4.54 (2 so round down)
- c) 5.999 to 2 sig fig = 6.0 (9 so round up) note the extra zero to ensure 2 significant figures

| Estimating - round each number to 1 sig fig then do the | calculation:

- a) 34.3 x 0.52 ≈ 30 x 0.5 = 15 (≈ means approximately)
- b) $231 + 45.9 \approx 200 + 50 = 250 = 500$

| Truncating Numbers - using the most significant part of | I the number and ignoring rounding rules:

I | Example: Truncate to 1 sig fig

- a) 39.654 = 30 (just the tens column)
- B) 0.4666 = 0.4

Limits of accuracy:

I These are called the upper and lower bound.

They are always half the given accuracy level each way:

For example, nearest 100 is 50 either way so the lower and | upper bounds of 500 are 450 and 550.

It is written: ∡450 ≤ 500 < 550

Lower Found

Upper Bound

Mathematics - Decimals

Four Operations with Decimals

Higher Tier Topics Only

Solve problems involving upper and lower bounds

Addition (A + B)

Upper Bound is Max A + Max B Lower Bound is Min A + Min B

I Multiplication (A x B)

Upper Bound is Max A x Max B Lower Bound is Min A x Min B

Subtraction (A + B)

■ Upper Bound is Max A - Min B (Biggest Gap) ■ Lower Bound is Min A - Max B (Smallest Gap)

Division (A + B)

Upper Bound is Max A + Min B (Biggest Gap) Lower Bound is Min A + Max B (Smallest Gap)

Example 1

The dimensions rectangle are to the nearest

of the 18 cm given cm.

Write, the upper and lower bounds of the perimeter of the rectangle:

Upper Bound (18.5 + 7.5) x 2 = 52cm Lower Bound (17.5 + 6.5) x 2 = 48cm

We write this as 48 ≤ Perimeter ≤ 52

Example 2

Aisha runs 100 m in 15 seconds.

Find the upper and lower bounds of Aisha's speed if the numbers are given to the nearest integer.

Upper: $100.5 \div 14.5 = 6.9 \text{ m/s} (1 \text{ d.p.})$ Lower: $99.5 \div 15.5 = 6.4 \text{ m/s} (1 \text{ d.p.})$

What do I need to be able to do?

Solve problems involving upper and lower bounds Convert a recurring decimal to a fraction

Error Bounds: the points where you change the number being used as an estimate

Error Interval: the range of values between the bounds shown as an inequality

Recurring decimal: repeated pattern of numbers

Maximum Value: Largest possible solution

| Minimum Value: Lowest possible solution

$4.5 \le x < 5.5$

5.2

5.4

4.8

Convert a recurring decimal to a fraction

Convert 0.8 to a fraction

10x = 8.8 (match the recurring decimal)

10x - x = 8.8 - 0.8

9x = 8 (divide 9)

 $x = \frac{8}{9}$

Convert 0.23 to a fraction

x = 0.23

10x = 2.3232 (decimal doesn't match)

100x = 23.23 (match the recurring decimal)

100x - x = 23.23- 0.23

99x = 23 (divide 99)

Convert 0.14545 to a fraction

x = 0.14545

10x = 1.4545 (decimal doesn't match)

100x = 14.5454 (decimal still doesn't match)

1000x = 145.4545 (decimal matches 10x)

1000x - 10x = 145.45 - 1.45

990x = 143 (divide 990)

 $x = \frac{143}{990}$

5.6

Mathematics - Algebraic Expressions

What do I need to be able to do?

- Substitute into algebraic expressions
- Simplify algebraic expressions
- Multiply out a single bracket
- Expand multiple single brackets and simplify
- Factorise into a single bracket
- Find the product of two brackets
- Find the product of three brackets
- Factorise quadratics of the form $x^2 + bx + c$ into 2 brackets
- Factorise quadratics of the form $ax^2 + bx + c$
- Write a quadratic in the form $(x + a)^2 + b$

Substitute into algebraic expressions

If
$$y = 7$$
, evaluate $3y - 2$

$$3y$$
 means 3 lots of $y = y + y + y$

3v - 2 = 7 + 7 + 7 - 2 = 19

$$a^2$$
 means $a \times a$
 $2a^2$ means $2 \times a \times a$

$$2a^2 + 4b = 2 \times 3 \times 3 + 4 \times 5$$

If a = 3 and b = 5, evaluate $2a^2 + 4b$

Simplify algebraic expressions

Simplify 2a + 5a + 3a (Collect like terms)

Simplify $a + 3b + 3a^2 - 2b$

Multiply out a single bracket

Expand $3(2x + 5)$											
2x + 5			2x + 5			2x + 5					
x	х	5	х	х	5	х	х	5			
6 1 45											

Expand and simplify where appropriate

$$7(3+a) = 21 + 7a$$

 $2(5+a) + 3(2+a) = 10 + 2a + 6 + 3a$

Find the product of three brackets (x + 3)(x + 4)(x + 2)

$$(x + 3)(x + 4)(x + 2)$$

$$(x+3)(x+4)$$
 = $x^2 + 7x + 12$

× x 3	×	x^2	7 <i>x</i>	12
x x^2 $3x$	x	x ³	$7x^2$	12x
4 4x 12	2	$2x^2$	14x	24

$$(x+3)(x+4)(x+2) = x^3 + 9x^2 + 26x + 24$$

Write a quadratic in the form $(x + a)^2 + b$

$$y = x^{2} - 2x - 15$$

$$y = x^{2} - 2x + 1 - 16$$

$$y = (x - 1)^{2} - 16$$

Operation: a mathematical process

Keywords:

Inverse: the operation that undoes what was done by the

previous operation. (The opposite operation)

Commutative: the order of the operations do not matter.

Variable: a letter that stands for a number

Substitute: replace one variable with a number or another

Term: number or variable in an expression or equation

Coefficient: number in front of the variable Like terms: variables which are the same

Constant: a term which is not a variable (a number)

Expression: a maths sentence with a minimum of two terms and at least one operation (no equals sign)

Simplify: write the expression as simply as possible

Evaluate: work out the value of **Expand**: multiply out brackets

Factorise: put an expression into brackets

Quadratic: an expression with a square (x^2) term and no

terms with higher powers

Find the product of two brackets

Expand (x + 5)(x + 4)

$$(x+5)(x+4) \equiv x^2 + 5x + 4x + 20$$
$$\equiv x^2 + 9x + 20$$

Factorise quadratics of the form $ax^2 + bx + c$

Look for other products that = -4which sum (add) to b = -3

2x(x-2)+1(x-2)

 $-4 \times 1 = -4$ -4 + 1 = -3 = b

Factorise into a single bracket

$$9x + 12 \equiv 3 \times 3x + 3 \times 4$$

3*x* $\equiv 3(3x+4)$

3 9x12